Evaluate numerical expressions involving integers

Key Notes:

1️⃣ Understand Integers

  • Integers are whole numbers including positive (+), negative (-), and zero (0).
  • Examples: …, -3, -2, -1, 0, 1, 2, 3, …
  • 🔹 Positive ➕
  • 🔹 Negative ➖

2️⃣ Order of Operations (BODMAS / PEMDAS) 🧮

  • Always follow this order:
    B – Brackets ( )
    O – Orders (powers and roots, e.g., 2²)
    D – Division ÷
    M – Multiplication ×
    A – Addition +
    S – Subtraction –

Example: 5+2×(3−1)=?5 + 2 \times (3 – 1) = ?5+2×(3−1)=?
Step 1: Brackets → 3 – 1 = 2
Step 2: Multiplication → 2 × 2 = 4
Step 3: Addition → 5 + 4 = 9 ✅


3️⃣ Adding Integers ➕

Same signs: Add and keep the sign

  • 5 + 3 = 8
  • -5 + -3 = -8

Different signs: Subtract smaller from larger, keep larger number’s sign

  • 7 + (-4) → 7 – 4 = 3 ✅
  • -7 + 4 → 7 – 4 = 3, sign = – ✅

4️⃣ Subtracting Integers ➖

Change subtraction to addition of the opposite

a – b = a + (-b)

  • Example: 5 – (-3) = 5 + 3 = 8 ✅
  • Example: -4 – 6 = -4 + (-6) = -10 ✅

5️⃣ Multiplying Integers ✖️

Same signs → Positive

  • 3 × 4 = 12 ✅
  • -3 × -4 = 12 ✅

Different signs → Negative

  • -3 × 4 = -12 ✅
  • 3 × -4 = -12 ✅

6️⃣ Dividing Integers ➗

Rules same as multiplication:

  • Same signs → Positive
  • Different signs → Negative

Example:

  • -12 ÷ 3 = -4 ✅
  • 12 ÷ -3 = -4 ✅

7️⃣ Practice Tips ✏️

  • Always simplify inside brackets first 🏷️
  • Use number lines for visual help 🟢🔴
  • Check sign rules carefully ✅

8️⃣ Quick Tricks ⚡

Double negative → positive: -(-5) = 5

Zero rules:

  • 0 + any number = number
  • 0 × any number = 0
  • Any number ÷ 0 → Not allowed ❌

9️⃣ Fun Example 🎉

Evaluate: −3+2×(4−7)-3 + 2 \times (4 – 7)−3+2×(4−7)

  • Step 1: Brackets → 4 – 7 = -3
  • Step 2: Multiply → 2 × -3 = -6
  • Step 3: Add → -3 + -6 = -9 ✅

Learn with an example

Try some practice problems!