Multiply and divide rational numbers
Key notes:
๐ข What Are Rational Numbers?
- Rational numbers are numbers that can be written as a fraction โจ
โค Example: ยฝ, โ3, 4/7, 0.25 โ๏ธ
โ๏ธ Multiplying Rational Numbers
๐ Rule 1: Multiply the Numerators
- Top ร Top
Example: 2/3 ร 4/5 = 8/15 ๐
๐ Rule 2: Multiply the Denominators
- Bottom ร Bottom
Example: โ3/4 ร 2/7 โ numerator: โ3ร2 = โ6, denominator: 4ร7 = 28
๐ Rule 3: Check the Sign
- (+) ร (+) = +
- (โ) ร (โ) = +
- (+) ร (โ) = โ
๐ Same signs โ Positive ๐
๐ Different signs โ Negative ๐
๐ฏ Shortcut:
Try to simplify the fractions before multiplying to make the answer smaller and easier! โ๏ธโจ
โ Dividing Rational Numbers
๐ Rule 1: Keep โ Change โ Flip (KCF) ๐ก
- KEEP the first fraction
- CHANGE division to multiplication
- FLIP the second fraction (take its reciprocal ๐)
๐ Example:
3/5 รท 2/3
= 3/5 ร 3/2
= 9/10 โ๏ธ
๐ Rule 2: Check the Sign
Same sign โ Positive ๐
Different sign โ Negative ๐
๐งฎ Multiplying & Dividing Integers (part of rationals!)
- (+) ร (โ) = negative
- (โ) รท (+) = negative
- (โ) ร (โ) = positive
- (โ) รท (โ) = positive
โจ Always check the signs first!
๐ Tips to Remember
- ๐ Flip only the second fraction in division
- โ๏ธ Multiply straight across
- ๐งน Simplify at the end
- ๐ง Practice makes it easy!
๐ Example Problems
1๏ธโฃ 2/3 ร โ5/8 = โ10/24 โ โ5/12
2๏ธโฃ โ7/9 รท 1/3 = โ7/9 ร 3/1 = โ21/9 โ โ7/3
Learn with an example
๐ผ Multiply. – 3 1/4 x 1 3/5 = _____
- Write the mixed numbers as improper fractions.
– 3 1/4 x 1 3/5
– 13/4 x 8/5
- Cancel common factors, then multiply.
– 13/4 x 8/5 = – 13/1 x 2/5
= – 13 x 2 / 1 x 5
= 26 / 5
- Simplify the answer.
- – 26/5 = – 5 1/5
๐ผ Multiply. – 1/2 x 1 1/2 = ____
- Write the mixed number as an improper fraction.

- Now multiply.
– 1/2 x 3/2 = – 1 x 3 / 2 x 2
= – 3 / 4
๐ผ Multiply. 1/8 x 2 = _____
- Write the whole number as a fraction.

- Cancel common factors, then multiply.
1/8 x 2/1 = 1/4 x 1/1
= 1 x 1 / 4 x 1
=1/4
Let’s practice!๐๏ธ

